Biotechnology Graduate Program

The Biotechnology graduate program offers the Master of Arts (A.M.), Master of Science (Sc.M.), and Doctor of Philosophy (Ph.D.) degrees and is designed for students interested in a range of topics related to the field of biotechnology including drug & gene delivery, drug discovery, and cell therapy. The educational objective is to promote an understanding of the designs and materials used in novel cell and drug delivery systems; the molecular, cellular and animal sciences of drug discovery & drug development; and the development and testing of cell-based therapies for the treatment of diseases. Active areas of research include: bioadhesive drug delivery systems, mesenchymal stem cells, alternatives to animal testing, nerve guidance channels, cartilage regeneration, cardiac arrhythmias, micro-vesicles, anti-microbials, insulin regulation, neuroactive & neuroprotective agents and cell delivery & encapsulation strategies.

For further information on admission and program requirements, please visit: http://www.brown.edu/academics/gradschool/programs/biomed-biotechnology-0

Ecology and Evolutionary Biology Graduate Program

The graduate program in Ecology and Evolutionary Biology is intended for highly qualified students who plan to pursue a career that includes research or teaching in ecology and/or evolutionary biology. Individual programs are designed to meet each student's needs and interests while providing a strong background in ecology, evolutionary biology and related disciplines. All students are expected to attain proficiency in ecological and evolutionary theory, quantitative research methods, statistical analysis, writing, and oral presentation. Depending on the student's interests, they may be expected to demonstrate proficiency in other areas such as functional morphology or genetics and genomics. This proficiency may be attained through coursework, seminars, independent reading, and laboratory and field programs. The Ecology and Evolutionary Biology program offers a Doctor of Philosophy (Ph.D.) degree as well as a 5th year Master of Science (Sc.M.) degree for students who would like to continue the research they started as an undergraduate at Brown. The Master of Science degree is also available for participants in Brown's Open Graduate Education Program.

For further information on admission and program requirements, please visit: http://www.brown.edu/academics/gradschool/programs/biomed-ecology-and-evolutionary-biology

Pathobiology Graduate Program

The graduate program in Pathobiology is an interdisciplinary and interdepartmental program devoted to biomedical research into the mechanisms of human diseases. The program offers a Doctor of Philosophy (Ph.D.) degree as well as a 5th year Master of Arts (A.M.) degree. The four major research and teaching thematic areas are: I) Environmental Pathology, II) Immunology & Infectious Diseases, III) Aging, and IV) Cancer biology. Training may be obtained in the areas of immunopathology, pulmonary pathology, chemical pathology, environmental and viral carcinogenesis, cancer biology, toxicologic pathology, extracellular matrix biology, hepatology, aging, and infectious diseases.

For further information on admission and program requirements, please visit: http://www.brown.edu/academics/gradschool/programs/biomed-pathobiology

Molecular Biology, Cell Biology, and Biochemistry Graduate Program

The graduate program in Molecular Biology, Cell biology, and Biochemistry (MCB) is intended for highly qualified students who plan to pursue a career which includes research in biology or medical sciences. The MCB Program offers a Doctor of Philosophy (Ph.D.) degree as well as 5th Year Master of Arts (A.M.) and Master of Science (Sc.M.) degrees. The program is interdisciplinary, focusing on molecular and cellular aspects of developmental biology, genetics, genomics and gene expression, signal transduction, oncogenesis, immunology, protein biochemistry, structural biology, proteomics, cell surface receptors, molecular modeling, DNA/RNA protein interactions, epigenetics, and virology.

For further information on admission and program requirements, please visit: http://www.brown.edu/academics/gradschool/programs/biomed-molecular-biology-cell-biology-and-biochemistry

Molecular Pharmacology and Physiology Graduate Program

The graduate program in Molecular Pharmacology and Physiology offers advanced training appropriate for academic and research careers in the fields of biology and medical sciences that include molecular and structural pharmacology, neuropharmacology; cellular, comparative, and organ systems physiology; and chemical biology. Programs of study and research are developed individually in consultation with the student's adviser and advisory committee and are designed to ensure expertise in the student's principal field. The Molecular Pharmacology & Physiology
Program offers a Doctor of Philosophy (Ph.D.) degree, as well as a 5th-Year Master of Science (Sc.M.) degree for students who would like to continue the research they started as an undergraduate at Brown.

For more information on admission and program requirements, please visit: http://www.brown.edu/academics/gradschool/programs/biomed-molecular-pharmacology-and-physiology

Biomedical Engineering Graduate Program

The Biomedical Engineering (BME) program provides cutting-edge, interdisciplinary, graduate-level education at the interface of engineering, biology, and medicine. The program features an interdisciplinary approach in three, complementary research areas: I) Mechanobiology, II) Neuroengineering, and III) Regenerative Engineering. Research in these areas is advancing the understanding of fundamental problems in engineering, biology, and medicine, while developing new therapies to improve the quality of life for people with medical problems. The program is distinguished by its quantitative rigor and strong collaborative connections among academic science, clinical medicine, and industry. The BME graduate program is designed for students with backgrounds in engineering, physics, or applied mathematics that seek additional education and training in the biological sciences.

The Biomedical Engineering program offers both the Master of Science (Sc.M) degree and the Doctor of Philosophy (Ph.D) degree. For more information on admission and program requirements, please visit: http://www.brown.edu/academics/gradschool/programs/biomedical-engineering

Courses

This course covers various aspects of structural and functional biology from primary to quaternary structure and deals with the 3D structure of proteins and nucleic acids and 3D structure determination. Course will be a mixture of lecture and class discussion/presentations. Students typically have taken an advanced undergraduate-level course in biology or biochemistry. Advanced undergraduates with permission. Enrollment limited to 20 students.

BIOL 2000C. Protein Biophysics and Structure: Molecular Basis of Disease.
Proteins are the engines of life. Determining how they function from a biophysical and structural perspective enables us to understand how they work and, equally important, how we can direct and alter their activities. These types of efforts are the basis of all medicinal and drug research. Students will obtain a broad and firm foundation of both biophysical methods and in depth studies of medicinally important proteins and protein complexes that will allow them to correlate structure and biological function. Graduate course; open to junior and senior undergraduates with appropriate prior coursework. Instructor permission required; enrollment limit: 12 students.

BIOL 2000D. Current Topics in Molecular, Cellular, Developmental Biology Biochemistry
Protein synthesis is a fundamental cellular process mediated by ribosomes. This course will focus on progress in understanding: ribosome structure and function, ribosome biogenesis and export, quality control, ribosome degradation, and interface of ribosomes with other cellular pathways. Students will present research publications on a given topic and lead a discussion examining the experimental approach and findings of each publication. Enrollment limited to 20. Intended for graduates and advanced undergraduates with instructor permission.

A technological revolution in genomics has exponentially increased our ability to gather biological data. A host of new methods and types of analysis has arisen to accommodate this dramatic shift in data collection. The broad scope of inquiry has ushered in an era of “system-wide” approaches and brute-force strategies where rare signals can be detected and studied. In this seminar we will cover papers that embody this new approach. Enrollment limited to 20 graduate students. Advanced undergraduates with appropriate course preparation and permission from instructor.

BIOL 2010. Quantitative Approaches to Biology.
Graduate level introduction to quantitative and computational methods in modern biology. Topics include Programming, Modeling, Algorithms, Bioinformatics, Applied Statistics, Structural Biology, Molecular Dynamics, Enzyme Kinetics, and Population and Quantitative Human Genetics. Preference is given to graduate students in Molecular Biology, Cell Biology and Biochemistry and Molecular Pharmacology, Physiology, and Biotechnology. Limited to 20 students. Instructor permission required. Spr BIOL2010 S01 23988 WF 2:00-5:00 (N. Neretti)

This course provides a comprehensive overview of the primary functional roles and steps involved in developing and commercializing a novel technology/scientific breakthrough within the biotechnology industry. This course is particularly suitable for students interested in pursuing a career within a biotechnology company, or for those interested in developing an in-depth knowledge of how the science of biotechnology becomes real world products. Pre Requisites: Foundations of Living Systems (BIOL0020), Principles of Physiology (BIOL0080), and Principles of Economics (ECON0110)/equivalent or instructor’s permission is required. Fall BIOL2020 S01 16105 Th 4:00-6:30(04) (J. Scott)

BIOL 2030. Foundations for Advanced Study in the Life Sciences.
A double-credit graduate course on multidisciplinary experimental approaches to biological questions. Focusing on primary literature, lectures and discussions cover the mechanisms and regulation of basic cellular processes involving nucleic acids (synthesis, structure, maintenance and transmission) and proteins (synthesis, maturation, function) and their integration into more complex circuits (signaling, organelle biogenesis and inheritance, cell cycle control). Required for PhD students in the MCB Graduate Program; all others must obtain instructor permission. Enrollment is limited to graduate students. Fall BIOL2030 S01 14962 F 10:00-11:35 (A. DeLong)
Fall BIOL2030 C01 14963 M 3:00-4:20 (K. Mowry)

BIOL 2040. Ultrastructure/Bioimaging.
This course examines microscopy and image analysis in the life sciences. Theoretical and practical aspects of microscopy will be discussed. Students will obtain hands-on experience with electron microscopy, light microscopy, fluorescence microscopy, and confocal microscopy. Students will learn to display images in 3D. For graduate students and advanced undergraduates. Instructor permission required. Spr BIOL2040 S01 24903 M 2:00-5:00 (G. Williams)

BIOL 2050. Biology of the Eukaryotic Cell.
(Undergraduate students should register for BIOL 1050.) Fall BIOL2050 S01 14982 Th 1:00-2:20 (S. Gerbi)
Fall BIOL2050 C01 14978 Th 6:00-7:20 (S. Gerbi)

BIOL 2089. The Importance of Intellectual Property in Biotechnology.
This course delves into the various roles of intellectual property in biotechnology. In addition to providing a solid foundation in the fundamentals of intellectual property, the course will use case studies in biotechnology to explore in depth the interplay between specific scientific breakthroughs and intellectual property. An understanding of the science of biotechnology is critical for advanced understanding of the value and possibilities of biotechnology intellectual property. Fall BIOL2089 S01 15574 F 10:00-12:20 (J. Morgan)

Program offers a Doctor of Philosophy (Ph.D.) degree, as well as a 5th-Year Master of Science (Sc.M.) degree for students who would like to continue the research they started as an undergraduate at Brown.

For more information on admission and program requirements, please visit: http://www.brown.edu/academics/gradschool/programs/biomed-molecular-pharmacology-and-physiology

Biomedical Engineering Graduate Program

The Biomedical Engineering (BME) program provides cutting-edge, interdisciplinary, graduate-level education at the interface of engineering, biology, and medicine. The program features an interdisciplinary approach in three, complementary research areas: I) Mechanobiology, II) Neuroengineering, and III) Regenerative Engineering. Research in these areas is advancing the understanding of fundamental problems in engineering, biology, and medicine, while developing new therapies to improve the quality of life for people with medical problems. The program is distinguished by its quantitative rigor and strong collaborative connections among academic science, clinical medicine, and industry. The BME graduate program is designed for students with backgrounds in engineering, physics, or applied mathematics that seek additional education and training in the biological sciences.

The Biomedical Engineering program offers both the Master of Science (Sc.M) degree and the Doctor of Philosophy (Ph.D) degree. For more information on admission and program requirements, please visit: http://www.brown.edu/academics/gradschool/programs/biomedical-engineering

Courses

This course covers various aspects of structural and functional biology from primary to quaternary structure and deals with the 3D structure of proteins and nucleic acids and 3D structure determination. Course will be a mixture of lecture and class discussion/presentations. Students typically have taken an advanced undergraduate-level course in biology or biochemistry. Advanced undergraduates with permission. Enrollment limited to 20 students.

BIOL 2000C. Protein Biophysics and Structure: Molecular Basis of Disease.
Proteins are the engines of life. Determining how they function from a biophysical and structural perspective enables us to understand how they work and, equally important, how we can direct and alter their activities. These types of efforts are the basis of all medicinal and drug research. Students will obtain a broad and firm foundation of both biophysical methods and in depth studies of medicinally important proteins and protein complexes that will allow them to correlate structure and biological function. Graduate course; open to junior and senior undergraduates with appropriate prior coursework. Instructor permission required; enrollment limit: 12 students.

BIOL 2000D. Current Topics in Molecular, Cellular, Developmental Biology Biochemistry
Protein synthesis is a fundamental cellular process mediated by ribosomes. This course will focus on progress in understanding: ribosome structure and function, ribosome biogenesis and export, quality control, ribosome degradation, and interface of ribosomes with other cellular pathways. Students will present research publications on a given topic and lead a discussion examining the experimental approach and findings of each publication. Enrollment limited to 20. Intended for graduates and advanced undergraduates with instructor permission.
BIOL 2110. Drug and Gene Delivery.
Topics in drug delivery systems including history of the field, advantages of controlled release technology, stabilization and release of proteins, fabrication methods, regulatory considerations, economic aspects, patents and intellectual property rights, and more. Prepares students for research in industry and academia, and offers information for consultants in the field. Expected: BIOL 1090, 1120; CHEM 0350, 0360. Enrollment limited from identifying a target to development of drugs for that target and the targets such as G-protein coupled receptors will be examined in detail drug targets and the development of novel drugs. Specific protein drug 0800. Limited to five (5) Graduate students only. Students MUST register for the lecture sections along with primary literature covering selected topics. BIOL 2130. Techniques in Molecular and Cell Science
This course provides hands-on laboratory training in state-of-the-art techniques in molecular and cellular sciences, and reinforces this training with didactic lectures that stress key principles, the quantitative approach and the most exciting applications of these technologies in the context of current research. Areas covered include cell culture, tissue engineering, DNA cloning, gene therapy, quantitative assays, microscopy and image analysis. Enrollment is limited to 12; written permission required. Permission will be granted after the first class. Students MUST register for the lecture section and a lab.

BIOL 2135. Pharmacokinetics and Drug Design.
Consists of the absorption, distribution, metabolism, and elimination of drugs. These factors, including dosage, determine the concentration of drugs at its sites of action, and intensity of effects. Will examine models describing the relationship between plasma drug concentrations and therapeutic drug effect. Will acquire biologic sampling techniques, analytic methods for measurement of drugs and metabolites, and procedures facilitating data used in designing drugs and dosage regimens. Prerequisite: BIOL 0800 or equivalent. Enrollment limited to 20. Preference given to graduate students in Biotechnology and BME, especially Masters students. Graduate students (PhD and ScM) from other programs enroll if permission of instructor is granted.

BIOL 2140. Principles in Experimental Surgery.
An introduction to the principles and practice of surgery, sterile technique, anesthesia, and laboratory animal care. Intended to provide highly supervised, hands-on experience in techniques for humane handling and surgical management of experimental animal subjects. Emphasizes surgical technique, anesthesia technique, and laboratory animal medicine. Prerequisite: BIOL 0800. Limited to five (5) Graduate students only. Instructor permission required. Students MUST register for the lecture section and the lab.

BIOL 2145. Molecular Targets of Drug Discovery.
This course emphasizes the role of cell physiology in the identification of drug targets and the development of novel drugs. Specific protein drug targets such as G-protein coupled receptors will be examined in detail from identifying a target to development of drugs for that target and the physiological consequences. Prerequisite: BIOL 0800. Enrollment limited to 20. Preference is given to graduate students in Biotechnology and BME, especially Masters students. Graduate students from other programs may enroll if permission of the instructor is granted.

Focused on the effective dissemination of scientific information. Through practical examples of activities common to the profession (writing a grant proposal, presenting research work orally, and preparing a critical review of a submitted scientific manuscript), students will develop the skills necessary to effectively communicate scientific ideas, experiments and results. Each of the activities will be dissected into key sets that will be individually developed with the aid of interactive discussions and peer review. Enrollment limited to 12 graduate students.
BIOL 2190. MPPB Professional Development Seminar. Professional development seminar required of all first year graduate students in the Molecular Pharmacology and Physiology Graduate Program, and open to graduate students in other programs. Topics include grants and funding, effective oral presentation skills, alternative careers in science, and others. All students will be required to present a research seminar during the scheduled class time. Instructor permission required for graduate students outside the Molecular Pharmacology and Physiology Graduate Program. Not intended for undergraduates.

Fall BIOL2190 S01 14970 M 12:00-1:30 (D. Horrigan)

BIOL 2200A. Molecular Biology and Chemistry. A critical evaluation of contemporary research in biochemistry, molecular biology, and structural biology. Intensive reading and discussion of the current literature, critical analysis, and student presentations in seminars. Advanced undergraduates with permission. Enrollment limited to 20.

BIOL 2200B. Post–Transcriptional Regulations of Gene Expression. Enrollment limited to 20.

BIOL 2200D. Current Topics in Biochemistry: Biochemical Genomics. A critical evaluation of current research in biochemistry and molecular biology focusing on the mechanism and regulation of transcription. Intensive reading, critical analysis, and discussion of the relevant literature in the context of student presentations in seminars. Advanced undergraduates with permission of the instructor. Enrollment limited to 20 students. Instructor permission required.

BIOL 2210A. Molecular Mechanisms in Site–Specific Recombination and DNA Transposition. Enrollment limited to 20.

BIOL 2210C. Current Topics in Molecular Biology: Cellular Quality Control Mechanisms. Protein synthesis is a fundamental cellular process that is dependent upon the rapid and accurate synthesis of ten to twenty thousand ribosomes per generation to carry out the equally rapid and accurate synthesis of protein. Progress in understanding Ribosome structure and function, Ribosome biogenesis and coordination of cell growth with cell division will be explored using the current literature with weekly student seminars and a final research proposal.

BIOL 2222B. Current Topics in Functional Genomics. A technological revolution in genomics has exponentially increased our ability to gather biological data. A host of new methods and types of analysis has arisen to accommodate this dramatic shift in data collection. The broad scope of inquiry has ushered in an era of "system-wide" approaches and brute-force strategies where rare signals can be detected and studied. In this seminar we will cover papers that embody this new approach. Students typically have taken an advanced undergraduate-level course in biology.

Fall BIOL2222B S01 16990 Arranged (N. Neretti)

BIOL 2230. Biomedical Engineering and Biotechnology Seminar. Required of all first- and second-year graduate students in the Biomedical Engineering and Biotechnology Seminar graduate program, and open to others. Concepts of drug delivery and tissue engineering, implantation biology, and cellular therapy, as well as the research projects directed by program faculty. Students present research seminars and participate in presentations by outside speakers. Includes Journal Club activities. Open to graduate students only.

Fall BIOL2230 S01 14971 T 4:30-7:00 (D. Hoffman-Kim)

BIOL 2240. Biomedical Engineering and Biotechnology Seminar. See Biomedical Engineering and Biotechnology Seminar (BIOL 2230) for course description.

Spr BIOL2240 S01 24005 T 4:30-7:10 (J. Morgan)

BIOL 2245. Blood Substitutes: Principles and Therapeutics Development. Blood serves many critical functions including respiratory gas transport, hemostasis and host defense. Plasma and cellular components of blood, their functional mechanisms, pathophysiologic consequences when deficient and current treatments will be reviewed. Finally, development of blood component substitutive therapeutics (blood substitutes) based on protein and cellular engineering technologies (biotherapeutics) will be discussed. Open to Graduates students and Juniors and Seniors who meet the pre-requisites BIOL 0800 and BIOL 0280 or with instructor's permission.

Fall BIOL2245 S01 14972 MW 10:30-11:50 (H. Kim)

BIOL 2250. Physiological Pharmacology. The objective of this course is to present drugs in the context of the diseases they are used to treat. A list of the Common medically prescribed drugs will be discussed in terms of their fundamental modes of action and clinical importance. Pertinent background biochemistry, physiology, and pathology is provided, e.g., the electrophysiology of the heart is discussed as a background to anti-arrhythmic drugs. Course is relevant for students interested in medicine journalism, law, government, precollege teaching, biomedical research, and pharmacy. Expected: background in physiology. For graduate students ONLY register for BIOL 2260 (enrollment limit 15); all others BIOL 1260.

Fall BIOL2250 S01 14947 TTh 10:30-11:50(13) (J. Marshall)

BIOL 2270. Advanced Biochemistry. (Undergraduate students should register for BIOL 1270.)

Fall BIOL2270 S01 14949 TTh 2:30-3:50(03) (R. Page)

BIOL 2290A. Mechanisms of Virus Entry, Replication, and Pathogenesis. This course will focus on the interactions between viruses and host cells that contribute to invasion, manipulation of viral and cellular gene expression, and manipulation of the host's response to infection. We will address interactions between viruses infecting humans, as well as those of plants, fungi, and bacteria. Students will be evaluated on their ability to critically analyze data in published manuscripts, including presentations of primary papers, classroom discussion, and completion of a research proposal. Expected: at least two of the following: BIOL 1050, 1270, 1520, 1540, 1560. Advanced undergraduates with permission of the instructor.

BIOL 2290B. Mechanisms of Protein Synthesis and Impact on Human Disease. This course will examine mechanisms central to the regulation of protein synthesis in both prokaryotes and eukaryotes. Targeting protein synthesis through ribosomes is a proven drug target commonly used to treat many infectious diseases. The regulation of protein synthesis in eukaryotes is critical for myriad human conditions including aging and cancer, including the recently discovered role of microRNAs. This course will explore the common and unique mechanisms of regulation of protein synthesis between prokaryotes and eukaryotes and the importance of understanding these mechanisms for human health. For graduate students and advanced undergraduates with permission.

BIOL 2290C. Neuronal Signaling meets the RNA World. The concept of one gene, one protein is nowhere more violated than in protein encoding genes expressed in the nervous system. We will cover a variety of post-transcriptional processing events which serve to generate protein diversity in the nervous system including alternative splicing, trans-splicing, and RNA editing. We will also address non-coding RNAs and their roles, in particular, in regulating nervous system function. Since it is clear that nervous system complexity is not a function of gene number across large phylogenetic distances, the course will be aimed at instilling a greater understanding of how the regulation of shared "toolkit" genes results in organismal complexity. Advanced undergraduates with permission of the instructor.

BIOL 2290D. Small RNA Regulation of Germ Cells and Development. Enrollment limited to 20.
BIOL 2290E. Signal Transduction.
This seminar course will provide a broad introduction to basic mechanisms of cell signaling from the extracellular environment to the nucleus of a cell, and to the mechanisms that regulate signal transmission. Topics discussed will include: processing and modification of signaling molecules; signal recognition/ligand binding; co-receptors and receptor trafficking; intracellular relays; transduction to the nucleus; regulation of signal intensity and duration; feedback controls. Signal transduction pathways from several model systems will be examined and their relevance to development and disease will be considered. Senior undergraduates with permission of the instructor. Enrollment limited to 20.

BIOL 2310. Developmental Biology.
Covers the molecular and cellular events of development from fertilized egg to adult. Genetic basis of body form, cell fate specification and differentiation, processes controlling morphogenesis, growth, stem cells and regeneration are examined. Differential gene regulation, intercellular signaling and evolutionary conversation are central to discussion of mechanisms governing developmental processes. Additional topics: developmental plasticity, impact of epigenetic and environmental factors, and basis of disease gleaned from developmental biology research. Live embryos complement and reinforce concepts covered in class. Expected: BIOL2020 (or equivalent), and one course in genetics, embryology, cell biology or molecular biology. Enrollment limited to 36. (Undergraduate students register for BIOL 1310.)
Fall BIOL2310 S01 14954 TTh 9:00-10:20(08) (K. Wharton)
Fall BIOL2310 L01 14955 Arranged "To Be Arranged"

BIOL 2320E. Genetic Control of Cell Fate Decisions.
A cell's fate is acquired in a process whereby largely uncommitted progenitor cells are instructed down a commitment path that ultimately results in a specific cell type with distinct molecular and physiological properties. This process is critical for the establishment of all cell types and tissues and is poised to be a critical topic in cell-based therapeutic strategies. We will investigate the intrinsic and extrinsic mechanisms that manifest at the genetic level to impart cell fate decisions on progenitors. Advanced undergraduates with permission of the instructor.

BIOL 2340. Neurogenetics and Disease.
Genetic mutations provide a powerful approach to dissect complex biologic problems. We will focus on fascinating discoveries from "forward genetic" studies – moving from nervous system phenotype to genetic mutation discovery. There will be an emphasis of neurologic disease phenotypes and the use of novel genomic methods to elucidate the central molecular and cellular causes for these conditions. The course will emphasize the use of "reverse genetics" – engineered mutations in model systems – to dissect nervous system function and disease mechanisms. Disorders to be covered include autism, intellectual disability, schizophrenia, epilepsy. Enrollment limited to 20. Instructor permission required.
Fall BIOL2340 S01 14973 W 4:00-6:50 (E. Morrow)
Fall BIOL2340 S02 16047 W 4:00-6:50 (R. Reenan)

BIOL 2350. The Biology of Aging.
Studying the mechanisms underlying the process of aging promises to be one of the next frontiers in biomedical science. Understanding the biology of aging is important for the long-term possibility of increasing life span, and for the immediate benefits it will have on age-related diseases. As demographics of industrialized countries have changed, age-related diseases such as cancer/cardiovascular/stroke, osteoporosis/arthrits/Alzheimer's have assumed epidemic proportions. Understanding the aging process is a prerequisite for designing interventions for treatment. Focus is on examining the biology of aging through the examination of a molecular/cellular/genetic and demographic nature. Suggested prerequisites: BIOL 0200, 0280, 0470, 0800. Enrollment limited to 20. Advanced undergraduates with permission of instructor.
Spr BIOL2350 S01 24006 Arranged (S. Helfand)

BIOL 2430. Topics in Ecology and Evolutionary Biology.
Current literature in ecology, behavior, and evolutionary biology is discussed in seminar format. Topics and instructors change each semester. Representative topics have included: structuring of communities, biomechanics, coevolution, quantitative genetics, life history strategies, and units of selection. Expected: courses in advanced ecology and genetics.
Fall BIOL2430 S01 14974 W 3:00-5:30(17) (D. Rand)
Fall BIOL2430 S02 15678 Arranged (D. Weinreich)
Spr BIOL2430 S01 24612 Arranged (J. Kellner)

BIOL 2440. Topics in Ecology and Evolutionary Biology.
See Topics In Ecology And Evolutionary Biology (BIOL 2430) for course description.
Spr BIOL2440 S01 24007 Arranged (D. Rand)

BIOL 2450. Exchange Scholar Program.
Fall BIOL2450 S01 14705 Arranged 'To Be Arranged'
Fall BIOL2450 S02 14706 Arranged 'To Be Arranged'

BIOL 2540. Molecular Genetics.
(Undergraduate students should register for BIOL 1540.)
Spr BIOL2540 S01 23989 TTh 2:30-3:50(11) (E. Larschan)

BIOL 2640A. Viral Immunology.
Viral Immunology is an advanced topics course in Microbiology and Immunology which will be focused on viral immunology. Weekly meetings will cover different issues concerning defense against viral infections and pathology related to viral infection, with focus on viral-host interactions. Topics will be selected to present either important basic concepts in the context of immune responses and/or major challenges in controlling viral infections. Recent advances in understanding virus-host interactions, host responses to viruses, cytokine regulation of immune responses or cytokine-mediated pathology during viral infections will be emphasized.
Spr BIOL2640A S01 24008 W 2:00-5:00 (C. Biron)

BIOL 2640B. Microbial Pathogenesis.
Examines microbial pathogens and the underlying mechanisms by which infectious organisms cause diseases. Bacterial, fungal, protozoal and viral pathogens will be studied using tools of modern biology. Also examined are the host's immune responses to infection and disease. Areas covered include mechanisms of pathogen internationalization and survival, immune responses, signal transduction and pathophysiology. Expected: BIOL 0510, 0530, or 1550.

BIOL 2640C. The Immune System.
Introduction to the experimental and theoretical foundations of immunology and the function of the mammalian immune system. Focuses on concepts, landmark experiments and recent advances. Topics include innate and adaptive immunity; structure/function of antibody molecules and T cell receptors; and regulation of immune responses through cellular interactions. Application of concepts to medically significant issues (vaccines, transplantation, hypersensitivity, autoimmunity, cancer, immunodeficiency) is discussed. Interpretative analysis of experimental data is emphasized. Activities include written assignments that analyze a hypothetical immune system and a final paper addressing an immunological topic of the student's choosing. For Pfizer students only.

BIOL 2850. Introduction to Research in Pathobiology.
Introduces incoming pathobiology graduate students with research opportunities in the laboratories of program faculty. Consists of seminars with individual faculty members in the graduate program in pathobiology. Required background reading of recent papers lead to a discussion of current research in the faculty member's laboratory. Additional discussions include safety and ethical issues in research. Open only to first-year graduate students in the program in pathobiology.
BIOL 2860. Molecular Mechanisms of Disease.
This course is designed for graduate students and focuses on the underlying causes of human disease. Students should have a solid background in the life sciences with an understanding of the fundamental principles of molecular biology, genetics, biochemistry and cell biology. A discussion of cystic fibrosis, using this disease to explore basic principles of molecular biology, genetics, physiology and pathology. Then the course centers on the genetic and environmental basis of disease and carcinogenesis. Will lecture individual student presentations and experimental planning exercises. Emphasis will be placed on the development of presentation skills and research design. Undergraduates require instructor permission.

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>CRN</th>
<th>Status</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>BIOL2860</td>
<td>S01</td>
<td>14976 Arranged</td>
<td>(K. Boekelheide)</td>
</tr>
</tbody>
</table>

BIOL 2970. Preliminary Examination Preparation.
For graduate students who have met the tuition requirement and are paying the registration fee to continue active enrollment while preparing for a preliminary examination.

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>CRN</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>BIOL2970</td>
<td>S01</td>
<td>14707 Arranged</td>
</tr>
<tr>
<td>Spr</td>
<td>BIOL2970</td>
<td>S01</td>
<td>23804 Arranged</td>
</tr>
</tbody>
</table>

BIOL 2980. Graduate Independent Study.
Independent study projects at the graduate level. Section numbers vary by instructor. Please check Banner for the correct section number and CRN to use when registering for this course.

BIOL 2985. Graduate Seminar.
Section numbers vary by instructor. Please see the registration staff for the correct section number to use when registering for this course.

BIOL 2990. Thesis Preparation.
For graduate students who have met the tuition requirement and are paying the registration fee to continue active enrollment while preparing a thesis.

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>CRN</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>BIOL2990</td>
<td>S01</td>
<td>14708 Arranged</td>
</tr>
<tr>
<td>Spr</td>
<td>BIOL2990</td>
<td>S01</td>
<td>23805 Arranged</td>
</tr>
</tbody>
</table>

BIOL 2995. Thesis.
Section numbers vary by instructor. Please see the registration staff for the correct section number to use when registering for this course.