Center for Computational Molecular Biology

The prime intellectual mission of Brown University's Center for Computational Molecular Biology (CCMB) (https://www.brown.edu/academics/computational-molecular-biology/) is to promote the development, implementation and application of analytical and computational methods to foundational questions in the biological and medical sciences. The research programs of the Core Faculty in CCMB lie fundamentally at the intersection of computer science, evolutionary biology, mathematics, and molecular and cellular biology.

Biological questions that currently unite the CCMB Core and Associate Faculty are: How do genotypes and genes interact to produce phenotypes, and how does this happen from womb to tomb? What drives the formation, maintenance and evolutionary transformations of communities of organisms over time? Quantitative questions that currently unite the CCMB faculty are: how can we design powerful algorithms to make sense of the sea of data produced in the genomic era? What principles are required for a theoretical framework to completely model cellular systems?

The research challenges at the heart of CCMB are a rich source of mathematical problems motivated by the complex nature of genomes, disease processes and evolutionary relationships. These challenges are both multi-scale (with units of interest ranging from molecules to communities of organisms) and large-scale (data-intensive, due to advances in sequencing technologies). Thus, CCMB rounds out the broader landscape of research in methodological development at Brown University by partnering with and complementing the Data Science Initiative (https://www.brown.edu/initiatives/data-science/) and the Brown Center for Biomedical Informatics. (https://www.brown.edu/academics/medical/about-us/research/centers-institutes-and-programs/biomedical-informatics/)

In addition to these research interests, CCMB Faculty members are actively involved in the operation of Brown's NIH-funded COBRE Center for the Computational Biology of Human Disease (https://www.brown.edu/research/projects/computational-biology-of-human-disease/), and administer both an undergraduate concentration (https://www.brown.edu/academics/computational-molecular-biology/courses-study/)and an interdisciplinary doctoral program (https://www.brown.edu/academics/computational-molecular-biology/courses-study/) in Computational Biology. This is a short video about our Ph.D. program in Computational Biology (https://www.youtube.com/watch/?v=p3zBdW-ENtU).

Computational Biology Concentration Requirements

Computational biology involves the analysis and discovery of biological phenomena using computational tools, and the algorithmic design and analysis of such tools. The field is widely defined and includes foundations in computer science, applied mathematics, statistics, biochemistry, molecular biology, genetics, ecology, evolution, anatomy, neuroscience, and visualization.

Students may pursue a Bachelor of Arts or a Bachelor of Science. Students pursuing the ScB have the option of electing a concentration in Computational Biology with one of three focus areas: Computer Sciences, Biological Sciences, or Applied Mathematics & Statistics. Both programs require a senior capstone experience that pairs students and faculty in creative research collaborations.

Standard program for the A.B. degree

Please see the bottom of the page for more information regarding the University Writing Requirement, the Capstone Experience, and the Computational Biology Honors Program.

Standard program for the A.B. degree

Please review the footnotes for clarifying details and see the bottom of the page for more information regarding the Capstone Experience and the Computational Biology Honors Program.

Prerequisites (0-3 courses)

Prerequisites (0-3 courses)				
Students must complete or place out of these prerequisites.				
MATH 0100	Single Variable Calculus, Part II			
or MATH 017	0 Single Variable Calculus, Part II (Accelerated)			
APMA 0260	Linear Algebra and Multivariable Calculus for Applied Mathematicians ¹			
or MATH 018	Multivariable Calculus			
or MATH 020	Multivariable Calculus (Physics/Engineering)			
or MATH 035	Multivariable Calculus With Theory			
BIOL 0200 The Foundation of Living Systems				
General Core Requirements: Biology				
BIOL 0470	Genetics			
BIOL 0280	Biochemistry			
or BIOL 0500	Cell and Molecular Biology			
General Core Rec	uirements: Chemistry	1		
CHEM 0330	Equilibrium, Rate, and Structure			
or CHEM 035	50 Organic Chemistry I			
General Core Rec	uirements: Computer Science	2		
Choose one of the	following groupings of introductory courses:			
Group A				
CSCI 0111 & CSCI 0200	Computing Foundations: Data and Program Design with Data Structures and Algorithms			
Group B				
CSCI 0150	Introduction to Object-Oriented			
& CSCI 0200	Programming and Computer Science and Program Design with Data Structures and Algorithms			
Group C				
CSCI 0170 & CSCI 0200	Computer Science: An Integrated Introduction and Program Design with Data Structures and Algorithms			
Group D	and Augonamio			
CSCI 0190	Accelerated Introduction to Computer			
& CSCI 0200	Science and Program Design with Data Structures and Algorithms (or any full-credit computer science course above CSCI 0190)			
General Core Rec	uirements: Probability & Statistics ²	1		
APMA 1650	Introduction to Probability and Statistics with Calculus			
or APMA 165	5 Introduction to Probability and Statistics with Theory			
or CSCI 1450	 Advanced Introduction to Probability for Computing and Data Science 	}		
or MATH 121	0 Probability			
Comp Bio Core C		4		
CSCI 1810	Computational Molecular Biology			
APMA 1080	Inference in Genomics and Molecular Biology ²			
AND two of the following:				
APMA 1070 Quantitative Models of Biological Systems				
APMA 1660	Statistical Inference II			
APMA 1690	Computational Probability and Statistics			
BIOL 1222A	Current Topics in Functional Genomics			
DIOI 4400	Farmedations of Daniel Honor Constitution			

Foundations of Population Genetics

BIOL 1430

BIOL 1435	Computational Methods for Studying Demographic History with Molecular Data
BIOL 1525	Pathogenomics: Analysis, interpretation and applications of microbial genomes
BIOL 1545	Human Genetics and Genomics
BIOL 1555	Methods in Informatics and Data Science for Health
BIOL 1575	Evaluation of Health Information Systems
CSCI 1420	Machine Learning
CSCI 1470	Deep Learning
CSCI 1820	Algorithmic Foundations of Computational Biology
PHP 1510	Principles of Biostatistics and Data Analysis
PHP 1560	Using R for Data Analysis
Additional 1000+ le	evel course with concentration advisor

Capstone Experience

Students enrolled in the computational biology concentration will complete a research project in their senior year under faculty supervision (i.e: BIOL 1950/1960, CSCI 1970, APMA 1970). The themes of such projects evolve with the field and the technology, but should represent a synthesis of the various specialties of the program. The requirements are either one semester of reading and research with a CCMB Faculty member or approved advisor resulting in an advanced research project or a 2000-level Computational Biology course that covers an advanced topic within the Computational Biology field and includes an advanced research component. ³

Total Credits 11

These courses are prerequisites for APMA 1655. Students who matriculate in or after Fall 2025 will be required to take APMA 1655 as a prerequisite for APMA 1080 and will therefore need to complete or place out of one of these courses.

APMA 1655 will be a prerequisite for APMA 1080 starting in Fall 2025. Current concentrators (as of Spring 2025) may still take APMA 1080 with APMA 1650 as their prerequisite but APMA 1655 is encouraged. Students matriculating in Fall 2025 or later will need to take APMA 1655 before taking APMA 1080.

Some 2000-level courses are not available to undergraduate students due to department restrictions but have 1000-level equivalents (such as BIOL 1545/2545) that can count for capstone credit with approval from the instructor and the student's faculty advisor. Please reach out to the CCMB Academic Programs Coordinator for more information.

Capstone Experience:

Students enrolled in the computational biology concentration will complete a research project in their senior year under faculty supervision. The themes of such projects evolve with the field and the technology, but should represent a synthesis of the various specialties of the program. The requirements are either one semester of reading and research with a CCMB Faculty member or approved advisor, or a 2000-level Computational Biology course.

Honors:

In order to be considered a candidate for honors, students will be expected to maintain an outstanding record. Students must have a majority of either As or S with distinction grades in concentration courses. In addition, students should take at least one semester, and are strongly encouraged to take 2 semesters semesters, of reading and research with a CCMB faculty member or approved advisor. In addition, students should take at least one semester, and are strongly encouraged to take 2 semesters of reading and research with a CCMB faculty member or approved advisor.

Students seeking honors are advised to choose a Thesis Advisor prior to the end of their Junior <u>year</u>. Students must complete the Comp <u>Bio</u> Honors Registration form (https://docs.google.com/forms/d/e/1FAlpQL\overline{\text{Se5}}jZSlwNdZqCFOWTPVQN7PQUM1aMmrZOOdLxox9DVuCjkDZw/viewform/) and submit their honors proposal to ccmb@brown.edu by the first Friday in October of their senior year. Students must submit a honors thesis in April of their senior year and present a public defense of their theses to the CCMB community. More information about the honors guidelines and deadlines can be found here: https://ccmb.brown.edu/academics/undergraduate-program/honors-designation. Any deviation from these rules must be approved by the director of undergraduate studies, in consultation with the student's advisor.

Standard program for the Sc.B. degree

Please see the bottom of the page for more information regarding the University Writing Requirement, the Capstone Experience, and the Computational Biology Honors Program.

Standard program for the Sc.B. degree

Please review the footnotes for clarifying details and see the bottom of the page for more information regarding the Capstone Experience and the Computational Biology Honors Program.

Prerequisites (0-3 courses)

Students must complete or place out of these prerequisites.				
MATH 0100 Single Variable Calculus, Part II (or				
111111111111111111111111111111111111111	equivalent)			
or MATH 0170	Single Variable Calculus, Part II (Accelerated)			
APMA 0260	Linear Algebra and Multivariable Calculus for Applied Mathematicians ¹			
or MATH 0180	Multivariable Calculus			
or MATH 0200	Multivariable Calculus (Physics/Engineering)			
or MATH 0350	Multivariable Calculus With Theory			
BIOL 0200	The Foundation of Living Systems (or equivalent)			
General Core Cours	e Requirements: Biology	2		
BIOL 0470	Genetics (prerequisite BIOL 0200 or equivalent)			
BIOL 0280	Biochemistry			
or BIOL 0500	Cell and Molecular Biology			
General Core Requi	rements: Chemistry	1		
CHEM 0330	Equilibrium, Rate, and Structure			
	Organic Chemistry I			
	rements: Computer Science	3		
CSCI 0220	Introduction to Discrete Structures and Probability			
AND complete one of the following groupings of introductory courses:				
Group A				
CSCI 0111 & CSCI 0200	Computing Foundations: Data and Program Design with Data Structures and Algorithms			
Group B				
CSCI 0150 & CSCI 0200	Introduction to Object-Oriented Programming and Computer Science and Program Design with Data Structures and Algorithms			
Group C				
CSCI 0170 & CSCI 0200	Computer Science: An Integrated Introduction and Program Design with Data Structures and Algorithms			
Group D				

CSCI 0190 & CSCI 0200	Accelerated Introduction to Computer Science	
	and Program Design with Data Structures and Algorithms (or any full-credit computer science course above CSCI 0190)	
General Core Requi	rements: Probability & Statistics ²	1
APMA 1650	Introduction to Probability and Statistics with Calculus	
or APMA 1655	Introduction to Probability and Statistics with Theory	
or CSCI 1450	Advanced Introduction to Probability for Compu and Data Science	ting
or MATH 1210	Probability	
General Core Requi	rements: Computational Biology	2
APMA 1080	Inference in Genomics and Molecular Biology ²	
CSCI 1810	Computational Molecular Biology	
Six Courses in One	Track	6
Choose one of 3 tracks: Computer Science, Biological Sciences, or Applied Mathematics and Statistics. See track requirements below.		
Capstone Experience		

Students enrolled in the computational biology concentration will complete a research project in their senior year under faculty supervision (i.e: BIOL 1950/1960, CSCI 1970, APMA 1970). The themes of such projects evolve with the field and the technology, but should represent a synthesis of the various specialties of the program. The requirements are either one semester of reading and research with a CCMB Faculty member or approved advisor resulting in an advanced research project or a 2000-level Computational Biology course that covers an advanced topic within the Computational Biology field and includes an advanced research component. 3

Total Credits 16

These courses are prerequisites for APMA 1655. Students who matriculate in or after Fall 2025 will be required to take APMA 1655 as a prerequisite for APMA 1080 and will therefore need to complete or place out of one of these courses.

APMA 1655 will be a prerequisite for APMA 1080 starting in Fall 2025. Current concentrators (as of Spring 2025) may still take APMA 1080 with APMA 1650 as their prerequisite but APMA 1655 is encouraged. Students matriculating in Fall 2025 or later will need to take APMA 1655 before taking APMA 1080.

Some 2000-Tevel courses are not available to undergraduate students due to department restrictions but have 1000-level equivalents (such as BIOL 1545/2545) that can count for capstone credit with approval from the instructor and the student's faculty advisor. Please reach out to the CCMB Academic Programs Coordinator for more information.

Tracks

Please review the prerequisites required for the courses below in CAB. Students should also be aware of the requirements for enrolling in a given CSCI course, which can be found on the Computer Science website.

Computer Science Track:

Three of the follow	ving:	3
CSCI 1230	Introduction to Computer Graphics	
CSCI 1270	Database Management Systems	
CSCI 1411	Foundations of AI	
CSCI 1420	Machine Learning	
CSCI 1430	Computer Vision	
CSCI 1470	Deep Learning	

CSCI 1820	Algorithmic Foundations of Computational Biology	
CSCI 2952G	Deep Learning in Genomics	
or other 1000+ leve the concentration a	el Computer Science course approved by advisor.	
Three of the following	:	3
APMA 1070	Quantitative Models of Biological Systems	
APMA 1660	Statistical Inference II	
APMA 1690	Computational Probability and Statistics	
BIOL 1430	Foundations of Population Genetics	
BIOL 1435	Computational Methods for Studying Demographic History with Molecular Data	
BIOL 1555	Methods in Informatics and Data Science for Health	
CPSY 1492	Computational Cognitive Neuroscience	
CSCI 0320 & CSCI 0330	Introduction to Software Engineering and Introduction to Computer Systems ¹	
CSCI 1550	Probabilistic Methods in Computer Science	
CSCI 1570	Design and Analysis of Algorithms	
PHP 1510	Principles of Biostatistics and Data Analysis	
PHP 1560	Using R for Data Analysis	
or another 1000+ level computational course approved by the concentration advisor.		
Total Credits		

Both CSCI 0320 and CSCI 0330 need to be taken to fulfill one of the six course requirements in this track.

Biological Sciences track

At least four 1000+ level courses comprising a coherent theme related to Computational Biology. Examples of themes include: Biochemistry, Ecology, Evolution, Genomics, Immunology, or Neurobiology. Other themes can be approved by your concentration advisor.

AND two courses from the following:

Η	IND two courses from	n the following:	
	APMA 1660	Statistical Inference II	
	APMA 1690	Computational Probability and Statistics	
	BIOL 1222A	Current Topics in Functional Genomics	
	BIOL 1250	Host-microbiome Interactions in Health and Disease	
	BIOL 1430	Foundations of Population Genetics	
	BIOL 1435	Computational Methods for Studying Demographic History with Molecular Data	
	BIOL 1525	Pathogenomics: Analysis, interpretation and applications of microbial genomes	
	CSCI 1420	Machine Learning	
	CSCI 1470	Deep Learning	
	CSCI 1820	Algorithmic Foundations of Computational Biology	
	PHP 1560	Using R for Data Analysis	
	or other 1000+ level by concentration a	el Computational Biology course approved dvisor.	

	· · · · · · · · · · · · · · · · · · ·	
or other 1000+ le	vel Computational Biology course approved advisor.	
Total Credits		6
Applied Mathemati	cs & Statistics Track:	
At least three course	es from the following:	3
APMA 0350 & APMA 0360	Applied Ordinary Differential Equations and Applied Partial Differential Equations	
APMA 1070	Quantitative Models of Biological Systems	

APMA 1660	Statistical Inference II	
APMA 1690	Computational Probability and Statistics	
APMA 1740	Recent Applications of Probability and Statistics	
PHP 1510	Principles of Biostatistics and Data Analysis	
PHP 1560	Using R for Data Analysis	
At least three of the f	ollowing:	3
BIOL 1222A	Current Topics in Functional Genomics	
BIOL 1430	Foundations of Population Genetics	
BIOL 1435	Computational Methods for Studying Demographic History with Molecular Data	
BIOL 1555	Methods in Informatics and Data Science for Health	
CSCI 1411	Foundations of AI	
CSCI 1420	Machine Learning	
CSCI 1470	Deep Learning	
CSCI 1820	Algorithmic Foundations of Computational Biology	
PHP 1855	Infectious Disease Modeling	
or other 1000+ level Computational Biology course approved by concentration advisor.		

Students must take both courses in this set (APMA 0350 & APMA 0360) to fulfill one of the six course requirements.

Capstone Experience:

Students enrolled in the computational biology concentration will complete a research project in their senior year under faculty supervision. The themes of such projects evolve with the field and the technology, but should represent a synthesis of the various specialties of the program. The requirements are either one semester of reading and research with a CCMB Faculty member or approved advisor, or a 2000-level Computational Biology course.

Honors:

Total Credits

Honors:

In order to be considered a candidate for honors, students will be expected to maintain an outstanding record. Students must have a majority of either As or S with distinction grades in concentration courses. In addition, students should take at least one semester, and are strongly encouraged to take 2 semesters semesters, of reading and research with a CCMB faculty member or approved advisor. In addition, students should take at least one semester, and are strongly encouraged to take 2 semesters of reading and research with a CCMB faculty member or approved advisor.

Students seeking honors are advised to choose a Thesis Advisor prior to the end of their Junior year. Students must complete the Comp Bio Honors Registration form and submit their honors proposal to ccmb@brown.edu by the first Friday in October of their senior year. Students must submit a honors thesis in April of their senior year and present a public defense of their theses to the CCMB community. More information about the honors guidelines and deadlines can be found here: https://ccmb.brown.edu/academics/undergraduate-program/honors-designation. Any deviation from these rules must be approved by the director of undergraduate studies, in consultation with the student's advisor.

Computational Biology Graduate Program

The Center for Computational Molecular Biology (CCMB) offers Ph.D. degrees in Computational Biology to train the next generation of scientists to perform cutting edge research in the multidisciplinary field of Computational Biology. During the course of their Ph.D. studies students will develop and apply novel computational, mathematical, and statistical

techniques to problems in the life sciences. Students in this program must achieve mastery in three areas - computational science, molecular biology, and probability and statistical inference - through a common core of studies that spans and integrates these areas.

The Ph.D. program in Computational Biology draws on course offerings from the disciplines of the Center's Core faculty members. These areas are Applied Mathematics (APMA), Computer Science (CS), the Division of Biology and Medicine (BioMed), Brown Center for Biomedical Informatics (BCBI), and the School of Public Health/Biostats (SPH). Our faculty and Director of Graduate Studies (DGS) work with each student to develop the best plan of coursework and research rotations to meet the student's goals in their research focus and satisfy the University's requirements for graduation.

Applicants should state a preference for at least one of these areas in their personal statement or elsewhere in their application. In addition, students interested in the intersection of Applied Mathematics and Computational Biology are encouraged to apply directly to the Applied Mathematics Ph.D. program (http://www.brown.edu/academics/applied-mathematics/graduate/), and also to contact relevant CCMB faculty members (https://www.brown.edu/academics/computational-molecular-biology/about/people/faculty-and-staff/).

Our PhD program assumes the following prerequisites: mathematics through intermediate calculus, linear algebra and discrete mathematics, demonstrated programming skill, and at least one undergraduate course in chemistry and in molecular biology. Exceptional strengths in one area may compensate for limited background in other areas, but some proficiency across the disciplines must be evident for admission.

- Ph.D. Program Overview & Handbook (https://www.brown.edu/academics/computational-molecular-biology/sites/brown.edu.academics.computational-molecular-biology/files/uploads/Comp%20Bio%20Ph.D.%20Program%20requirements%20%26%20handbook 1.pdf) (pdf file)
- FAQ (http://brown.edu/academics/computational-molecular-biology/ frequently-asked-questions/)

The application process to the CCMB graduate program is run through the Graduate School (http://www.brown.edu/academics/gradschool/)