Neuroscience

Chair
David M. Berson

Neuroscience is the scientific study of the nervous system, including its development, functions, and pathologies. It is an interdisciplinary field that encompasses neurobiology (anatomy, physiology, biochemistry, molecular biology, genetics), elements of psychology and cognitive science, and mathematical and physical principles involved in modeling neural systems. The Department of Neuroscience offers an undergraduate concentration leading to the Sc.B. degree and a graduate program leading to the Ph.D. degree. These programs include courses offered by the department and by several allied departments. The Department of Neuroscience has modern facilities for conducting research in a broad range of areas from molecular mechanisms to behavior and undergraduate students are encouraged to pursue research projects.

For additional information, please visit: http://neuroscience.brown.edu/

Neuroscience Concentration

Requirements

Neuroscience is an interdisciplinary field that seeks to understand the functions and diseases of the nervous system. It draws on knowledge from neurobiology as well as elements of psychology and cognitive science and mathematical and physical principles involved in modeling neural systems. Through the Neuroscience concentration, students develop foundational knowledge through courses in biology, chemistry, and mathematics as well as three core courses in neuroscience. They are also required to develop facility with research methodologies (through courses in statistics and laboratory methods) before moving into specific topics in the field (e.g., visual physiology, neurochemistry and behavior, and synaptic transmission and plasticity). Members of the Neuroscience faculty are affiliated with the Brown Institute for Brain Science, a multidisciplinary program that promotes collaborative research about the brain. Prospective concentrators should contact Elyse_Netto@brown.edu in order to have a faculty advisor assigned to them.

Standard program for the Sc.B. degree

The concentration combines a general science background with a number of specific courses devoted to the cellular, molecular, and integrative functions of the nervous system. The concentration allows considerable flexibility for students to tailor a program to their individual interests. Elective courses focus on a variety of areas including molecular mechanisms, cellular function, sensory and motor systems, neuropharmacology, learning and memory, animal behavior, cognitive function, bioengineering, theoretical neuroscience and computer modeling.

The concentration in neuroscience leads to an Sc.B. degree. The following background courses, or their equivalent, are required for the degree:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 0090</td>
<td>Introductory Calculus, Part I</td>
<td>1</td>
</tr>
<tr>
<td>MATH 0100</td>
<td>Introductory Calculus, Part II</td>
<td>1</td>
</tr>
<tr>
<td>PHYS 0030</td>
<td>Basic Physics</td>
<td>1</td>
</tr>
<tr>
<td>PHYS 0040</td>
<td>Basic Physics</td>
<td>1</td>
</tr>
<tr>
<td>BIOL 0200</td>
<td>The Foundation of Living Systems</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 0330</td>
<td>Equilibrium, Rate, and Structure</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 0350</td>
<td>Organic Chemistry</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEUR 0010</td>
<td>The Brain: An Introduction to Neuroscience</td>
<td>1</td>
</tr>
<tr>
<td>NEUR 1020</td>
<td>Principles of Neurobiology</td>
<td>1</td>
</tr>
</tbody>
</table>

Core Concentration Courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEUR 0010</td>
<td>The Brain: An Introduction to Neuroscience</td>
<td>1</td>
</tr>
<tr>
<td>NEUR 1020</td>
<td>Principles of Neurobiology</td>
<td>1</td>
</tr>
<tr>
<td>NEUR 1030</td>
<td>Neural Systems</td>
<td>1</td>
</tr>
</tbody>
</table>

One neuroscience lab course

One critical reading course

One statistics course

Four electives related to neuroscience

Total Credits: 17

1. Independent study and honors research projects are encouraged.

Neuroscience Graduate Program

The program in Neuroscience offers graduate study leading to the Doctor of Philosophy (Ph.D.) degree. The program is designed to educate and train scientists who will become leaders in the field and contribute to society through research, teaching and professional service. The core of the training involves close interaction with faculty to develop expertise in biological, behavioral, and theoretical aspects of neuroscience. Graduate research and training are carried out in the laboratories of the program’s faculty. These faculty trainers lead outstanding well-funded research programs that use cutting edge technology to explore the nervous system.

For more information on admission and program requirements, please visit: http://www.brown.edu/academics/gradschool/programs/biomed-neuroscience

Courses

NEUR 0010. The Brain: An Introduction to Neuroscience

Introduction to the mammalian nervous system with emphasis on the structure and function of the human brain. Topics include the function of nerve cells, sensory systems, control of movement and speech, learning and memory, emotion, and diseases of the brain. No prerequisites, but knowledge of biology and chemistry at the high school level is assumed.

- Fall: NEUR0010 S01 16566 TTh 1:00-2:20(10) (M. Paradiso)

NEUR 0650. Biology of Hearing

Examines the sensory and perceptual system for hearing; the external, middle, and inner ears; the active processes of the cochlea; sound transduction and neural coding; neural information processing by the auditory system; and the nature of auditory perception and its biological substrate. Prerequisite: an introductory course in Neuroscience, Cognitive Science, Physics, Engineering or Psychology.

- Spr: NEUR0650 S01 25189 MWF 1:00-1:50(06) (J. Simmons)

NEUR 0680. Introduction to Computational Neuroscience

An introductory class to computational neuroscience. Students will learn the main tools of the trade, namely differential equations, probability theory and computer programming, as well as some of the main modern neural-modeling techniques. Assignments will include the writing of simple MatLab code.

- Spr: NEUR0680 S01 25190 TTh 2:30-3:50(11) (L. Bienenstock)

NEUR 0700. Psychoactive Drugs and Society

Will examine psychoactive drugs from two perspectives: (1) biological mechanisms of drug action and (2) the impact of psychoactive drug use on society and society attitudes towards psychoactive drug usage. Drugs to be discussed will include alcohol, opiates, cocaine, marijuana, LSD, nicotine and caffeine, as well as drugs used therapeutically to treat psychiatric disorders. This course will benefit students who are interested in exploring both the biological and social aspects of psychoactive drug use. Prerequisite: NEUR 0010 or equivalent.

- Spr: NEUR0700 S01 25191 MW 3:00-4:20(14) (R. Patrick)

NEUR 1020. Principles of Neurobiology

A lecture course covering fundamental concepts of cellular and molecular neurobiology. Topics include structure of ion channels, synaptic transmission, synaptic development, molecular mechanisms of synaptic plasticity, learning and memory and neurological diseases. Prerequisite: NEUR 0010. Strongly recommended: BIOL 0200 or equivalent.

- Spr: NEUR1020 S01 25192 TTh 9:00-10:20(01) (C. Aizenman)
NEUR 1030. Neural Systems. This lecture course examines key principles that underlie the function of neural systems ranging in complexity from peripheral receptors to central mechanisms of behavioral control. Prerequisite: NEUR 010 or the equivalent. First year students require instructor approval.

NEUR 1040. Introduction to Neurogenetics. Recent advances in molecular biology and molecular genetics have allowed researchers to test specific hypotheses concerning the genetic control of behavior and neurological disease. This course will familiarize you with the relatively new and exciting field of neurogenetics. We will cover basic topics, new ideas, and unsolved problems in neurogenetics primarily through the two assigned texts. However, neurogenetics is essentially a “frontier” area in neuroscience, and the best way to approach this topic is by scientific literature, which will be covered in some lectures.

NEUR 1440. Neural Dynamics. Neurons and systems of neurons vary in their activity patterns on millisecond to second time scales, commonly referred to as “neural dynamics.” This course addresses mechanisms underlying this flexibility and its potential meaning for information processing in the brain. The course integrates biophysical, single neuron and human studies. Examples topics include the impact of attention on neural firing rates, oscillations and sensory representation in neocortex, and the origins and potential meaning of the dynamics during sleep. Students will be introduced to computational modeling as a method to gain insight into dynamics, but no prior mathematics or programming background is required.

NEUR 1520. Exploring Neural Data. While a large part of being a neuroscientist involves performing experiments to collect data, the reality of studying the brain is that you can often collect way more data than you know what to do with! In this course, we will discuss data analytic challenges in neuroscience. We will provide real data sets for hands-on student activities. By the end of the course, students will have the basic tools and techniques to begin to work with neuroscience data themselves. Topics will include spike train, EEG and behavioral analyses. The course will emphasize basic computer programming skills in Python.

NEUR 1540. Neurobiology of Learning and Memory. Exploration of learning and memory from the molecular to the behavioral level. Topics will include declarative and procedural memory formation and storage, associative and non-associative learning, cellular and molecular mechanisms for learning, and disorders affecting learning and memory. Examples will be drawn from numerous brain areas and a variety of model systems, including humans. Students will gain experience interpreting experiments from primary literature. Prerequisite: NEUR 1020. WRIT Spr NEUR1540 S01 25197 MWF 11:00-11:50(04) (M. Linden)

NEUR 1600. Experimental Neurobiology. Intensive laboratory experience in neuroscience appropriate for students with basic background in Neurobiology. Learn and employ the classical neurophysiological techniques of extracellular recording, intracellular recording and receptive field mapping using a variety of animal species. Experiments will include recording of sensory signals in the cockroach leg; frog sciatic nerve and sciatic nerve/muscle preparation; intracellular recording of neurons in Aplysia; receptive field mapping in frog skin; and visual field mapping in the frog tectum. Instruction on and practice of effective science writing is another component to this course. Labs are supplemented by informal lectures. Enrollment limited to 18. WRIT Spr NEUR1600 S01 25248 W 12:00-12:50 (J. Stein)
Spr NEUR1600 S02 25290 W 1:00-1:50 (J. Stein)

NEUR 1650. Structure of the Nervous System. Combined lecture and laboratory course on the anatomy of the central nervous system. Lectures survey the circuitry of the major neural systems for sensation, movement, cognition, and emotion. Laboratory exercises (Mon. 10:30-12:30) include brain dissections, microscopy of nervous tissue, and discussion of clinical cases. Prerequisites: NEUR 010, 1020, and 1030. Sign-up sheet in Sidney Frank Hall, Room 315 beginning on the first day of registration. Instructor permission required.

NEUR 1660. Neural Basis of Cognition. Lecture course. Emphasizes the systems approach to neuroscience and examines several neural systems that mediate perception, action, higher visual and motor processing, learning, memory, attention, emotion, consciousness and sleep. The course focuses on experiments involving behavioral electrophysiology and discusses mechanisms mediating neural activity that mediates cognition. Prerequisites: NEUR 010 and NEUR 1030, or instructor permission.

NEUR 1740. The Diseased Brain: Mechanisms of Neurological and Psychiatric Disorders. The goals of this course are to illustrate what basic science can teach us about neurological disorders and how these pathologies illuminate the functioning of the normal nervous system. Consideration will be given to monogenic diseases (e.g., Fragile X Syndrome, Duchenne Muscular Dystrophy and Tuberous Sclerosis) as well as genetically complex disorders, such as Autism, Schizophrenia and Alzheimer’s Disease. Emphasis will be on the cellular and molecular basis of these disorders and how insights at these levels might lead to the development of therapies. Prerequisites: NEUR 1020. BIOL 0470 suggested.

The brain, too, dances. Its rhythms are the result of millions of neurons coordinating each other’s activity. This course will explore how these rhythms are generated, how they relate to our perception and cognition, and how they can be used to better understand and diagnose psychiatric and neurological disorders. Our readings in this seminar will range from historical reviews of brain rhythms to modern primary literature employing cutting-edge experimental neuroscience techniques. Prerequisite: NEUR 010 or the equivalent.

NEUR 1930A. Cognitive Neuroscience: Motor Learning. This critical reading course will investigate the behavioral and neural mechanisms of motor learning. Readings will focus on work done with neuroimaging, neural recording and neuropsychological approaches that have addressed how the brain organizes and controls different forms of movement including simple conditional, practice-related changes and sensory-motor associations. Prerequisites: NEUR 010, NEUR 1020, and NEUR 1030, or equivalent.

NEUR 1930B. From Neurophysiology to Perception. This seminar will use readings from the research literature to explore the neural basis of perception. There will be an emphasis on vision, though other sensory modalities may be discussed. Prerequisites: NEUR 010, NEUR 1020, and NEUR 1030, or equivalent.
NEUR 1930C. Development of the Nervous System.
The course will explore core concepts of developmental biology in the context of the developing nervous system. Topics will include: neuronal specification, cell migration, axon guidance, synapse formation, and neural plasticity. Students will gain experience with the primary literature and learn about cellular and molecular mechanisms of brain development and the tools and model organisms used to study them. Sign-up sheet in Sidney Frank Hall, Room 315 beginning on the first day of registration.

NEUR 1930D. Cells and Circuits of the Nervous System.
Selected topics on the biology of neurons and neuronal networks emphasizing original research literature about the membrane physiology, transmitter function, synaptic plasticity, and neural interactions of different vertebrate central nervous systems. Appropriate for graduates and undergraduates with strong neuroscience background. Offered alternate years. Previously offered as NEUR 2150.

NEUR 1930E. Great Controversies in Neurobiology.
This upper-level course examines some of the great controversies in the history of neurobiology. Reading material is drawn primarily from the primary scientific literature, so students are expected to already be familiar with reading scientific papers. Each theme will focus on a particular controversy, examining experimental evidence supporting both sides of the issue. Prerequisites: NEUR 0100 and NEUR 1020. Sign-up sheet in Sidney Frank Hall, Room 315 beginning on the first day of registration. Instructor permission required.

NEUR 1930F. Brain Interfaces for Humans.
Seminar course will cover developing and existing neurotechnology to restore lost human neurological functions. It will cover stimulation technologies to restore hearing, vision and touch, recording technologies to return function for persons with paralysis. The course will also cover devices to modulate brain function (e.g. deep brain stimulators). We will discuss early brain technologies, the present state neural sensors and decoders and future technology developments (e.g. brain-machine hybrids, human augmentation), as well as ethical implications. A final paper will be required. Instructor permission required. Prerequisites: NEUR 0100. NEUR 1020, and NEUR 1030: 1 year of physics, calculus. Enrollment restricted to 20 Neuroscience Concentrators and Graduate Students. Sign-up sheet in Sidney Frank Hall, Room 315 beginning on the first day of registration.

NEUR 1930G. Disease, Mechanism, Therapy: Harnessing Basic Biology for Therapeutic Development.
The recent surge in understanding the cellular and molecular basis of neurological disease has opened the way for highly targeted drug discovery and development. In this course we will use several case studies to illuminate how mechanistic insights are being translated into novel therapeutic approaches. Instructors permission required. Enrollment limited to 15. Sign-up sheet in Sidney Frank Hall, Room 315 beginning on the first day of registration.

NEUR 1930H. Neurological Disorders: Neural Dynamics + Neurotechnology.
A seminar course on neural dynamics and therapeutic approaches based on open-/closed-loop Brain-Computer Interfaces (BCIs) and neuromodulation for neurological and neuropsychiatric disorders. Topics include: (1) Disorders of consciousness: loss-of-consciousness in generalized epileptic and psychogenic seizures; closed-loop seizure control; Coma, medically induced coma and general anesthesia; Neuroimaging of consciousness; (2) BCIs for auditory/visual/ somatosensory disorders; (3) Movement disorders: BCIs for restoring movement/communication; adaptive-DBS for Parkinson’s disease and essential tremor. (4) Neuropsychiatric disorders: DBS for major depression and obsessive compulsive disorder. Enrollment is capped at 20. Sign-up sheet: Sidney Frank Hall, Room 315, beginning on the first day of registration. Instructor permission required.

NEUR 1930I. Neural Correlates of Consciousness.
This course will consider the neuroscience of consciousness from a variety of perspectives, using examples from behavior, neurophysiology, neuroimaging and neurology. The course content will focus on primary literature, using review articles for background. Students will lead discussions. Sign-up required by Google Docs. Strongly Recommended: NEUR 1030. Enrollment limited to 15. Instructor permission required.

NEUR 1930J. Region of Interest: An In-Depth Analysis of One Brain Area.
In-depth exploration of one region of the brain. Topics will include: cell types and properties; synaptic properties; plasticity; connections to other brain areas; sub-divisions within the area; the region's role in sensation and perception; the region's role in action and behavior; the region's role in learning and memory; and diseases and disorders. Students will gain a deeper understanding of concepts and principles that apply throughout the brain. Students will gain experience with primary literature and learn about techniques for studying the area. Sign-up sheet in Sidney Frank Hall, Room 315 beginning on the first day of registration. Topic for Fall 2016: The Amygdala.

NEUR 1940A. Higher Cortical Function.
This reading course examines a series of high-level neurocognitive deficits from the perspectives of popular science and basic neuroscience. Prerequisite: NEUR 1030. Instructor permission required. Sign-up sheet in Sidney Frank Hall, Room 315 beginning on the first day of registration.

NEUR 1940B. Molecular Neurobiology: Genes, Circuits and Behavior.
In this seminar course, we will discuss primary research articles, both recent and classical, covering topics ranging from the generation of neuronal diversity to the control of behavior by specific neural circuits. Instructor permission required; enrollment limited to 15. Sign-up sheet in Sidney Frank Hall, Room 315 beginning on the first day of registration.

NEUR 1940C. Development of the Nervous System.
The course will consider the development of the nervous system from a variety of perspectives, using examples from behavior, neurophysiology, neuroimaging and neurology. The course content will focus on primary literature, using review articles for background. Students will lead discussions. Sign-up sheet in Sidney Frank Hall, Room 315 beginning on the first day of registration. Prerequisite: NEUR 0010, 1020, and 1030. Enrollment limited to 15. Instructor permission required.
NEUR 1970. Independent Study. Laboratory-oriented research in neuroscience, supervised by staff members. A student, under the guidance of a neuroscience faculty member, proposes a topic for research, develops the procedures for its investigation, and writes a report of the results of his or her study. Independent study may replace only one required course in the neuroscience concentration. Prerequisites include NEUR 0010, 1020 and 1030. Section numbers vary by instructor. Please check Banner for the correct section number and CRN to use when registering for this course. Permission must be obtained from the Neuroscience Department.

NEUR 2010. Graduate Proseminar in Neuroscience. A study of selected topics in experimental and theoretical neuroscience. Presently by neuroscience faculty, students, and outside speakers. A required course for all students in the neuroscience graduate program. Fall NEUR2010 S01 16593 Arranged (G. Bamea)

NEUR 2020. Graduate Proseminar in Neuroscience. See Graduate Pro-Seminar In Neuroscience (NEUR 2010) for course description. Spr NEUR2020 S01 25212 Arranged (G. Bamea)

NEUR 2030. Advanced Molecular and Cellular Neurobiology I. Focuses on molecular and cellular approaches used to study the CNS at the level of single molecules, individual cells and single synapses by concentrating on fundamental mechanisms of CNS information transfer, integration, and storage. Topics include biophysics of single channels, neural transmission and synaptic function. Enrollment limited to graduate students. Fall NEUR2030 S01 16595 Arranged (A. Hart)

NEUR 2040. Advanced Molecular and Cellular Neurobiology II. This course continues the investigation of molecular and cellular approaches used to study the CNS from the level of individual genes to the control of behavior. Topics include patterning of the nervous system, generation of neuronal diversity, axonal guidance, synapse formation, the control of behavior by specific neural circuits and neurodegenerative diseases. Enrollment is limited to graduate students. Spr NEUR2040 S01 25210 Arranged (G. Bamea)

NEUR 2050. Advanced Systems Neuroscience. Focuses on systems approaches to study nervous system function. Lectures and discussions focus on neurophysiology, neuroimaging and lesion analysis in mammals, including humans. Computational approaches will become integrated into the material. Topics include the major sensory, regulatory, and motor systems. Enrollment limited to graduate students. Fall NEUR2050 S01 16784 Arranged (D. Sheinberg)

NEUR 2060. Advanced Systems Neuroscience. Focuses on cognitive approaches to study the CNS system function. Lectures and discussions focus on neurophysiology, neuroimaging and lesion analysis in mammals, including humans. Computational approaches will become integrated into the material. Topics include the major cognitive systems, including perception, decisions, learning and memory, emotion and reward, language, and higher cortical function. Instructor permission required. Spr NEUR2060 S01 25486 Arranged (T. Desrochers)

NEUR 2110. Statistical Neuroscience. A lecture and computing lab course for senior undergraduate and graduate students with background in either systems neuroscience or applied math/biomedical engineering on the statistical analysis and modeling of neural data, with hands-on Matlab/Octave/Python-based applications to real and simulated data. Topics will include signal processing, hypothesis testing and statistical inference, modeling of multivariate time series and stochastic processes in neuroscience and neuroengineering, neural point processes, time and spectral domain analyses, and state-space models. Example datasets include neuronal spike trains, local field potentials, ECoG/EEG, and fMRI. Sign-up sheet in Sidney Frank Hall, Room 315 beginning on the first day of registration. Instructor permission required. Fall NEUR2110 S01 16719 Arranged (W. Truccolo)

NEUR 2120. Topics in Visual Physiology. Selected topics in visual physiology are examined through a close and critical reading of original research articles. Emphasizes the anatomical and physiological bases of visual function. Primarily for graduate students with a strong background in neuroscience and a working knowledge of the anatomy and physiology of the mammalian visual system. Offered in alternate years. Instructor permission required.

NEUR 2150. Cells and Circuits of the Nervous System. Selected topics on the biology of neurons and neuronal networks emphasizing original research literature about the membrane physiology, transmitter function, synaptic plasticity, and neural interactions of different vertebrate central nervous systems. Primarily for graduate students with a background in basic neurobiology, or undergraduates with permission. Offered alternate years.

NEUR 2160. Neurochemistry and Behavior. Examines behavior from a neurochemical perspective via readings and discussions based on original research articles. Intended primarily for graduate students with a strong background in neuroscience and neuropharmacology and advanced undergraduates with an appropriate background. Offered alternate years. Sign-up sheet in Sidney Frank Hall, Room 315 beginning on the first day of registration.

NEUR 2920. Behavior: A Genetic and Molecular Perspective. Many of the cellular and molecular mechanisms that underlie behavior are conserved across species. This seminar course draws on work in invertebrate and vertebrate species to examine the genes and molecules that have been implicated in diverse behaviors. Topics to be discussed include circadian rhythms, pair bonding, migration, and aggression. Each week, students will read two to three papers from the primary literature and actively participate in class discussion. Prerequisites: NEUR 0010 and NEUR 1020 (undergraduate students) or NEUR 2030 (graduate students). Enrollment limited to 13. Instructor permission required.

NEUR 2930C. Historical Foundations of the Neurosciences. Two year sequence starting Fall 2010; students register for one year at a time. The first year (2010-2011) will examine the history of neuroscientific concepts from the late Greeks (Galen) to the later 19th century, up to Cajal (neuron doctrine) and Sherrington (reflexes and integration). Since the seminar meets only monthly, it must be taken in the Fall and Spring semesters to receive a semester's credit. For credit, a substantial paper (approximately 15 pages) is required at the end of the Spring semester. Primarily for graduate students in neuroscience, cognitive science, and psychology. Others may be admitted after discussion with the instructor. Auditors are welcome if they share in the rotating duty of presenting seminars. Sign-up sheet in Sidney Frank Hall, Room 315 beginning on the first day of registration.

NEUR 2930E. Bench to Bedside: Unraveling Diseases of the Nervous System. Enrollment restricted to graduate students.

NEUR 2930F. Disease, Mechanism, Therapy: Harnessing Basic Biology for Therapeutic Development. The recent surge in understanding the cellular and molecular basis of neurological disease has opened the way for highly targeted drug discovery and development. In this course we will use several case studies to illuminate how mechanistic insights are being translated into novel therapeutic approaches. Instructor permission required. Enrollment limited to 15 Graduate students. Sign-up sheet in Sidney Frank Hall, Room 315 beginning on the first day of registration.

NEUR 2940A. Advanced Molecular Neurobiology. No description available.

NEUR 2940G. Historical Foundations of the Neurosciences II. Continuation of a two year sequence focusing on the conceptual foundations in the history of neuroscience, from the late nineteenth century to the present. Primarily for graduate students in neuroscience, cognitive science, and psychology, but senior undergraduates may be admitted with written permission from the instructor. Seminar meets monthly, and must be taken for the full year to receive one semester credit.
NEUR 2940H. Ethics and Skills Workshop.
The ethics and skills workshops will be lead by faculty trainers in the Neuroscience Graduate Program. We will cover the following or similar topics over a two year period: Plagiarism, scientific accuracy, data ownership, expectations of advisory committees and mentors, authorship disagreements, and conflicts among lab members. Enrollment restricted to graduate students.

NEUR 2940I. Neural Correlates of Consciousness.
Will consider the neuroscience of consciousness from a variety of perspectives, using examples from behavior, neurophysiology, neuroimaging and neurology. The course content will focus on primary literature, using review articles for background. Students will lead the discussions. Primarily for graduate students. Senior undergraduates neuroscience concentrators and others may be admitted after discussion with the instructor. Instructor permission required. S/NC

NEUR 2970. Preliminary Examination Preparation.
For graduate students who have met the tuition requirement and are paying the registration fee to continue active enrollment while preparing for a preliminary examination.

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>CRN</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>NEUR2970</td>
<td>15011</td>
<td>Arranged</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(D. Sheinberg)</td>
</tr>
<tr>
<td>Spr</td>
<td>NEUR2970</td>
<td>24032</td>
<td>Arranged</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(D. Sheinberg)</td>
</tr>
</tbody>
</table>

NEUR 2980. Graduate Independent Study.
Section numbers vary by instructor. Please check Banner for the correct section number and CRN to use when registering for this course. S/NC

NEUR 2990. Thesis Preparation.
For graduate students who have met the tuition requirement and are paying the registration fee to continue active enrollment while preparing a thesis.

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>CRN</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>NEUR2990</td>
<td>15012</td>
<td>Arranged</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(D. Lipscombe)</td>
</tr>
<tr>
<td>Spr</td>
<td>NEUR2990</td>
<td>24033</td>
<td>Arranged</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(D. Lipscombe)</td>
</tr>
</tbody>
</table>
Font Notice

This document should contain certain fonts with restrictive licenses. For this draft, substitutions were made using less legally restrictive fonts. Specifically:

Helvetica was used instead of Arial.
The editor may contact Leepfrog for a draft with the correct fonts in place.