1

Computer Science

Ph.D. Requirements

Requirements for the Ph.D. program can be found at https://cs.brown.edu/ degrees/doctoral/reqs/reqs_phd.2015.pdf

The department of Computer Science offers two graduate degrees in computer science. The Master of Science (Sc.M.) degree for those who wish to improve their professional competence in computer science or to prepare for further graduate study, and the Doctor of Philosophy (Ph.D) degree.

For more information on admission, please visit the following website:

http://www.brown.edu/academics/gradschool/programs/computer-science (http://www.brown.edu/academics/gradschool/programs/computer-science/)

Requirements for the Masters Degree

Degree requirements are divided into two components: the Basic Component (six courses) and the Advanced Component (two courses). Students must have a B average for all eight courses. All courses must be taken for a grade (they may not be taken S/NC).

Basic Component

The basic component consists of six courses at the 1000 level or higher. Three of them must be CSCI courses. Three of them may be courses related to Computer Science, but offered in other departments and approved by the DGS (master's). An (evolving) list of such courses is on our website.

Advanced Component

One of:

- Two instances of CSCI 2980 in which the student completes a master's project under the direction of a CS faculty member and provides a project report approved by that faculty member. Thus the master's project represents two semesters of work.
- Two 2000-level CSCI courses other than 2980.

Restrictions

No more than two courses (in the combined Basic and Advanced components) may be Arts/Humanities/Policy courses without advisor and DGS approval. These courses are listed in our website, but currently are: {1250, 1280, 1360, 1370, 1800, 1805, 1860, 1870, 1952B, 1952X, 2002, 2402C, 2952S, 2999A, APMA 1910, DEVL 1810, IAPA 1701A, IAPA 1801, PLCY 1702X}.

No more than three instances of 2980 may be used.

Rationale

Students entering the Master's program typically have one of two goals: they intend to pursue research careers in computer science and are preparing themselves to enter PhD programs, or they intend to become professional computer scientists and pursue careers in industry. In both cases, some students might take collections of courses that not only give them strength in particular areas of computer science, but also include complementary areas that familiarize them with other ways of thinking about the field. For example, a student whose interests are in the practical aspects of designing computer systems should certainly take courses in this area, but might also gain some breadth, taking courses in, perhaps, artificial intelligence. However, some students might feel they've obtained sufficient breadth from their undergraduate studies, and feel the need to take courses only in their areas of specialization. Thus, while we suggest to students that they should explore both depth in a particular area as well as breadth in a broad collection of areas, we allow them to take whatever collection of CS courses they (and their advisors) feel serves their needs.

Students whose goals are research careers should become involved as quickly as possible with research groups as part of their Master's studies, and demonstrate and learn about research by participating in it. The

resulting research reports will serve to establish their suitability for entering PhD programs.

Students whose goals are to be professional computer scientists should have some professional experience as part of their preparation. A certain amount of basic coursework is required before a student can qualify for a pedagogically useful internship. Students with limited experience in computer science should take a few advanced computer science courses before embarking on an internship. Other students, particularly those whose undergraduate degrees were at Brown, will likely have had internship experiences while undergraduates. Internships provide insights for subsequent courses and project work at Brown. Students without such experiences are at a disadvantage with respect to their peers.

Note that these internships are not courses and the work is not evaluated as it would be for a course. Students' advisors will assist them in choosing an internship, but it is up to students themselves to ensure that they get as much benefit as possible from their experiences. They must be able to take advantage of these experiences while completing their Master's projects — we expect as high-quality work from them as we do from students who entered the program with prior internship experiences.

A Master's degree normally requires three to four semesters of full-time study, depending upon one's preparation.

CSCI	1010	Theory of Computation	1
CSCI	1040	The Basics of Cryptographic Systems	1
CSCI	1230	Introduction to Computer Graphics *	1
CSCI	1234	Computer Graphics Capstone	.5
CSCI	1250	Introduction to Computer Animation	1
CSCI	1260	Compilers and Program Analysis	1
CSCI	1270	Database Management Systems	1
CSCI	1280	Intermediate 3D Computer Animation	1
CSCI	1300	Interaction Design	1
CSCI	1310	Fundamentals of Computer Systems	1
CSCI	1330	Computer Systems	1
CSCI	1340	Introduction to Software Engineering	1
CSCI	1360	Human Factors in Cybersecurity	1
CSCI	1380	Distributed Computer Systems	1
CSCI	1420	Machine Learning	1
CSCI	1430	Computer Vision	1
CSCI	1440	Algorithmic Game Theory	1
CSCI	1460	Computational Linguistics	1
CSCI	1470	Deep Learning	1
CSCI	1510	Introduction to Cryptography and Computer Security	1
CSCI	1515	Applied Cryptography	1
CSCI	1550	Probabilistic Methods in Computer Science	1
CSCI	1570	Design and Analysis of Algorithms	1
CSCI	1600	Real-Time and Embedded Software	1
CSCI	1620	Computer Systems Security Lab	0.5
CSCI	1650	Software Security and Exploitation	1
CSCI	1660	Introduction to Computer Systems Security	1
CSCI	1670	Operating Systems	1
CSCI	1680	Computer Networks	1
CSCI	1690	Operating Systems Laboratory	0.5
CSCI	1710	Logic for Systems	1
CSCI	1730	Design and Implementation of Programming Languages	1
CSCI	1760	Multiprocessor Synchronization	1
CSCI	1800	Cybersecurity and International Relations	1
CSCI	1805	Computers, Freedom and Privacy	1
CSCI	1810	Computational Molecular Biology	1
CSCI	1860	Cybersecurity Law and Policy	1

CSCI 1870	Cybersecurity Ethics	1
CSCI 1880	Introduction to Computer Security	1
CSCI 1950N	2D Game Engines	1
CSCI 1950U	Topics in 3D Game Engine Development	1
CSCI 1951A	Data Science	1
CSCI 1951C	Designing Humanity Centered Technology	1
CSCI 1951L	Blockchains and Cryptocurrencies	1
CSCI 1951T	Surveying VR Data Visualization Software for Research	1
CSCI 1951X	Formal Proof and Verification	1
CSCI 1951Z	Fairness in Automated Decision Making	1
CSCI 1952Q	Algorithmic Aspects of Machine Learning	1
CSCI 1952X	Contemporary Digital Policy and Politics	1
CSCI 1952Y	Computer Architecture	1
CSCI 1952Z	Robots as a Medium: Creating Art with Teams of Robots	1
CSCI 2002	Privacy and Personal Data Protection	1
CSCI 2230	Computer Graphics	1
CSCI 2240	Interactive Computer Graphics	1
CSCI 2270	Topics in Database Management	1
CSCI 2340	Software Engineering	1
CSCI 2370	Interdisciplinary Scientific Visualization	1
CSCI 2390	Privacy-Conscious Computer Systems	1
CSCI 2440	Advanced Algorithmic Game Theory	1
CSCI 2470	Deep Learning	1
CSCI 2540	Advanced Probabilistic Methods in Computer Science	1
CSCI 2660	Computer Systems Security	1
CSCI 2670	Operating Systems	1
CSCI 2810	Advanced Computational Molecular Biology	1
CSCI 2840	Advanced Algorithms in Computational Biology and Medical Bioinformatics	1
CSCI 2951E	Topics in Computer Systems Security	1
CSCI 2951I	Computer Vision for Graphics and Interaction	1
CSCI 29510	Foundations of Prescriptive Analytics	1
CSCI 2951U	Topics in Software Security	1
CSCI 2951X	Reintegrating AI	1
CSCI 2952G	Deep Learning in Genomics	1
CSCI 2952N	Advanced Topics in Deep Learning	1
CSCI 2952O	A Practical Introduction to Advanced 3D Robot Perception	1
CSCI 2952Q	Robust Algorithms for Machine Learning	1
CSCI 2952R	Systems Transforming Systems	1
CSCI 2952S	Topics in Cyber and Digital Policy	1
CSCI 2999A	Cybersecurity Management Within Business, Government, and Non-Profit Organizations	1
* Ctudanta may arran	no with the instructor to reasive 2000 level	

* Students may arrange with the instructor to receive 2000 level credit for additional coursework in CSCI 1230, 1660 or 1670

Professional Track

Students choosing the professional track must complete the eight courses of the basic and advanced components given above. In addition, students must complete full-time internships doing work that is related to Computer Science, totaling 140 - 840 hours, whereby each internship must be at least 140 hours in duration. Such work is normally done at a company, but may also be at a university under the supervision of a faculty member.

On completion of each professional experience or internship, the student must write a reflective essay about the experience addressing specific

prompts on our website. The essay must be sent to and approved by the DGS.

Concurrent ScB (NUS) and ScM in Computational Biology (Brown University)

The School of Computing at National University of Singapore and The Department of Computer Science at Brown have established a concurrent Bachelor's and Master's degree program in Computational Biology. After having first completed four years of under- graduate study at National University of Singapore (NUS), qualified students will attend Brown University to complete their fifth and final year of study in computational biology. After the successful completion of requirements set forth by both universities, the students will simultaneously earn both their Sc.B. and Sc.M. degrees. The Sc.B will be awarded by the National University of Singapore, while the Sc.M. is awarded by Brown University.