Mathematics-Computer Science

Students may opt to pursue an interdisciplinary Bachelor of Science degree in Math-Computer Science, a concentration administered cooperatively between the mathematics and computer science departments. Course requirements include math- and systems-oriented computer science courses, as well as computational courses in applied math. Students must identify a series of electives that cohere around a common theme. As with other concentrations offered by the Computer Science department, students have the option to pursue the professional track (http://www.cs.brown.edu/ugrad/concentrations/professional.track.html) of the ScB program in Mathematics-Computer Science.

Requirements for the Standard Track of the Sc.B. degree.

Prerequisites
Three semesters of Calculus to the level of MATH 0180, MATH 0200, or MATH 0350
MATH 0520 or MATH 0540

Core Courses
MATH 1530
Select one of the following series:

Series A
CSCI 0150 & CSCI 0160 Introduction to Object-Oriented Programming and Computer Science and Introduction to Algorithms and Data Structures

Series B
CSCI 0170 & CSCI 0180 Computer Science: An Integrated Introduction and Computer Science: An Integrated Introduction

Series C
CSCI 0190 Accelerated Introduction to Computer Science and an additional CS course not otherwise used to satisfy a concentration requirement; this course may be CSCI 0180, an intermediate-level CS course, or a 1000-level CS course

CSCI 0320 Introduction to Software Engineering
CSCI 0330 Introduction to Computer Systems
CSCI 0220 Introduction to Discrete Structures and Probability
or CSCI 1010 Theory of Computation

Three 1000-level Mathematics courses
Three advanced courses in Computer Science
Three additional courses different from any of the above chosen from Mathematics, Computer Science, Applied Mathematics, or related areas
A capstone course in Computer Science or Mathematics

Note: CSCI 1450 may be used either in place of CSCI 220 or 1010 in the core courses or as an advanced course. CSCI 1450 was formerly known as CSCI 450: they are the same course and hence only one may be taken for credit. Applied Math 1650 or 1655 may be used in place of CSCI 1450. However, concentration credit will be given for only one of Applied Math 1650, Applied Math 1655, and CSCI 1450.

Total Credits

1 These courses must be at the 1000-level or higher. The three courses must include a pair of courses with a coherent theme. A list of pre-approved pairs may be found at the approved-pairs web page (http://cs.brown.edu/ugrad/concentrations/approvedpairs.html). You are not restricted to the pairs on this list, but any pair not on the list must be approved by the director of undergraduate studies.
2 These must be approved by a concentration advisor.
3 A one-semester course, normally taken in the student's last undergraduate year, in which the student (or group of students) use a significant portion of their undergraduate education, broadly interpreted, in studying some current topic in depth, to produce a culminating artifact such as a paper or software project.

Requirements for the Professional Track of the Sc.B. degree.
The requirements for the professional track include all those of the standard track, as well as the following:

Students must complete two two-to-four-month full-time professional experiences, doing work that is related to their concentration programs. Such work is normally done within an industrial organization, but may also be at a university under the supervision of a faculty member. On completion of each professional experience, the student must write and upload to ASK a reflective essay about the experience addressing the following prompts, to be approved by the student's concentration advisor:

• Which courses were put to use in your summer's work? Which topics, in particular, were important?
• In retrospect, which courses should you have taken before embarking on your summer experience? What are the topics from these courses that would have helped you over the summer if you had been more familiar with them?
• Are there topics you should have been familiar with in preparation for your summer experience, but are not taught at Brown? What are these topics?
• What did you learn from the experience that probably could not have been picked up from course work?
• Is the sort of work you did over the summer something you would like to continue doing once you graduate? Explain.
• Would you recommend your summer experience to other Brown students? Explain.
Font Notice

This document should contain certain fonts with restrictive licenses. For this draft, substitutions were made using less legally restrictive fonts. Specifically:

Helvetica was used instead of Arial.
The editor may contact Leepfrog for a draft with the correct fonts in place.