You're logged in as |

Biomedical Engineering

The Sc.B. program in Biomedical Engineering is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org/. It is jointly offered by the School of Engineering and the Division of Biology and Medicine as an interdisciplinary concentration designed for students interested in applying the methods and tools of engineering to the subject matter of biology and the life sciences. The education objectives of the Biomedical Engineering program are to prepare graduates: (1) to be employed in careers of useful service to society, including scientific and technical areas within medicine, industry, and health care delivery or for graduate study in BME and related fields; (2) to demonstrate the ability to apply the basic principles of engineering and science, as well as problem solving skills and critical thinking, to a broad spectrum of biomedical engineering problems; (3) to demonstrate their ability to work in teams, and to effectively communicate and understand the broad social, ethical, economic and environmental consequences of their lifelong education. The student outcomes of this program are the ABET (1) - (7) Student Outcomes as defined by the "ABET Criteria for Accrediting Engineering Programs (available online at http://www.abet.org/accreditation-criteria-policies-documents/)." The Biomedical Engineering concentration shares much of the core with the other engineering programs, but is structured to include more courses in biology and chemistry, and a somewhat different emphasis in mathematics.

The requirements regarding Mathematics, Advanced Placement, Transfer Credit, Substitutions for Required Courses, and Humanities and Social Science Courses are identical to those of the Sc.B. degree programs in Engineering. Please refer to the Engineering section of the University Bulletin for explicit guidelines.  

The Biomedical Engineering concentration shares much of the core with the other engineering programs, but is structured to include more courses in biology and chemistry, and a somewhat different emphasis in mathematics. 

 Standard program for the Sc.B. degree

1. Core Courses
ENGN 0030Introduction to Engineering1
or ENGN 0031 Honors Introduction to Engineering
ENGN 0040Dynamics and Vibrations1
ENGN 0510Electricity and Magnetism1
or ENGN 0520 Electrical Circuits and Signals
ENGN 0720Thermodynamics1
ENGN 0810Fluid Mechanics1
CHEM 0330Equilibrium, Rate, and Structure1
CHEM 0350Organic Chemistry1
MATH 0190Advanced Placement Calculus (Physics/Engineering)1
or MATH 0170 Advanced Placement Calculus
or MATH 0100 Introductory Calculus, Part II
MATH 0200Intermediate Calculus (Physics/Engineering)1
or MATH 0180 Intermediate Calculus
or MATH 0350 Honors Calculus
APMA 0330Methods of Applied Mathematics I, II1
or APMA 0350 Applied Ordinary Differential Equations
APMA 1650Statistical Inference I1
or BIOL 0495 Statistical Analysis of Biological Data
or PHP 1510 Principles of Biostatistics and Data Analysis
or APMA 1655 Statistical Inference I
2. Upper Level Biomedical Engineering Curriculum
ENGN 1110Transport and Biotransport Processes1
ENGN 1210Biomechanics1
ENGN 1230Instrumentation Design1
ENGN 1490Biomaterials1
BIOL 0800Principles of Physiology1
3. Additional Biomedical Engineering Electives (Complete at least 3 courses from the following groups):3
Select one or two of the following:
Neuroengineering
Nanoengineering and Nanomedicine
Cardiovascular Engineering
Biomedical Optics
Cancer Nanotechnology
Implantable Devices
Tissue Engineering
Computational Molecular Biology
Algorithmic Foundations of Computational Biology
ENGN 0500
Digital Computing Systems
Computer Aided Visualization and Design
Analytical Modeling for Biomechanical and Biomedical Systems
Optical Microscopy: Fundamentals and Applications
Stem Cell Engineering
Drug and Gene Delivery
At least one or two more courses from:
Biochemistry
Genetics
Cell and Molecular Biology
Introductory Microbiology
Principles of Immunology
Cell Physiology and Biophysics
Methods in Informatics and Data Science for Health
Quantitative Approaches to Biology
Quantitative Models of Biological Systems
Organic Chemistry
Computational Vision
Visualizing Vision
Topics in Translational Research and Technologies
Principles of Neurobiology
Mechanisms and Meaning of Neural Dynamics
Biological Physics
21st Century Applications in Cell and Molecular Biology
4. Capstone Design 1
ENGN 1930LBiomedical Engineering Design and Innovation 11
ENGN 1931LBiomedical Engineering Design and Innovation II 11
5. General Education Requirement: At least four approved courses must be taken in the humanities and social sciences.
Total Credits21